Monitoring Microcirculatory Blood Flow during Cardiopulmonary Bypass in Paediatric Cardiac Surgery Patients as a Predictor for Anaerobic Metabolism

RAMESH PATEL1, ATUL SOLANKI1, HASMUKH PATEL1, JIGNESH PATEL1, HIMANI PANDYA1, JAINAM SHARMA2

ABSTRACT

Introduction: Improving tissue oxygenation is one of most important tasks in management of low cardiac output. Central venous oxygen saturation (ScvO2) and lactate are established criteria for monitoring the adequacy of tissue oxygenation. The venous-to-arterial carbon dioxide difference (P(v-a)CO2) is inversely associated with cardiac output.

Aim: To study the use of P(v-a)CO2/C(a-v)O2 ratio as a marker of low cardiac output during Cardiopulmonary Bypass (CPB) in paediatric cardiac surgical patients.

Materials and Methods: The present study was a prospective observational study conducted over a period of nine months from 1st August 2015 to 30th April 2016. A total of 110 children were enrolled, who underwent CPB during cardiac surgery. The CPB time, Mean Arterial Pressure (MAP), flow rate, cross clamp time, were recorded for all the patients as well as Arterial Blood Gas (ABG) and Venous Blood Gas (VBG) were checked at four different points of time: 1) Before CPB, 2) 10 minutes after initiation of CPB, 3) 30 minutes on CPB and 4) off CPB.

Results: The results indicated that Receiver Operating Characteristic curve (ROC curve) at 30 minute of CPB time P(v-a)CO2/C(a-v)O2 was more specific and sensitive than lactate to detect anaerobic metabolism. Decrease platelet count was significant on second postoperative day.

Conclusion: The present study suggests the use of P(v-a) CO2/C(a-v)O2 ratio as a marker to detect low flow on CPB. Our study was single centric and with a small size, studies involving large population and multiple centers are required to support the recent findings.

INTRODUCTION

Tissue hypoxia due to low cardiac output or CPB induced inflammatory response is an important predictor of multiorgan failure [1]. Systemic blood pressure and ratio of oxygen demand versus supply are commonly used techniques for monitoring tissue oxygenation [2]. Early Goal Directed Therapy (GDT) that includes targeted haemodynamic parameters, mix venous oxygen saturation and lactate level improves patient outcome in septic shock as well as in severe sepsis [3]. Multiorgan dysfunction resulting in death, has been reported in a number of patients despite of maintaining systemic haemodynamic parameters and mixed venous saturation [4,5].

Shock such as cardiogenic, septic, hypovolemic or obstructive aetiology leads to decrease in tissue perfusion, which reflects as increase in P(v-a)CO2 on blood gas analysis [5-7].

An inverse relationship between P(v-a)CO2 and cardiac output has been described. Even after achieving haemodynamic and mix venous oxygen saturation targets, a persistently high P(v-a)CO2 indicates inadequate resuscitation in septic patients [8]. Thus, P(v-a) CO2 is an important marker to track global tissue perfusion and early detection of rise in CO2 due to anaerobic metabolism [9].

Recent studies have tried to demonstrate the reliability of P(v-a)CO2 as a tool in resuscitation of septic patients [10]. The haemodynamic management of patients in shock aims at improving tissue oxygenation. ScvO2 is a useful tool reflecting the global transport and metabolism of oxygen. Persistently low ScvO2 indicates inadequate tissue perfusion leading to tissue hypoxia and is associated with increase in postoperative morbidity [11-13].

Low ScvO2 along with increase in postoperative complications has been observed in a recent study on individualized goal directed therapy [14]. A high ScvO2 value may not reflect adequacy of microcirculation, limiting its use in routine clinical practice [15,16].

Interestingly, central venous-to-arterial PCO2 differences P(v-a) CO2, with central venous PCO2 as a surrogate for mixed venous PCO2, has recently been proposed as a useful tool for GDT in ICU-septic patients to identify persistent hypoperfusion when a ScvO2 > 70% has been reached [17]. Decreased tissue blood flow (ischemic hypoxia) represents the major determinant of increased P(v-a)CO2 [18], and P(v-a)CO2 could therefore be considered as an indicator of adequate venous blood flow to remove CO2 produced by peripheral tissues [19,20]. Lactate clearance, measured at a particular time interval, also assesses tissue oxygen delivery [21].

MATERIALS AND METHODS

This prospective observational study was carried out after approval by Institutional Ethics Committee and written and informed consents were obtained for all patients/parents who participated in the study. The time period was 1st August 2015 to 30th April 2016, and conducted at UN Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India. A total of 110 children, who underwent CPB during cardiac surgery, were included. Exclusion criteria were age more than 18 years, emergency surgery and refusal to participate in study.

Preoperative variables including demographics, diagnosis and previous medical history were collected. Intraoperative variables like CPB time, MAP, flow rate, cross clamp time, were recorded for all the patients. ABG and VBG were checked at four points: 1) Before CPB; 2) 10 minutes; 3) 30 minutes after initiation of CPB; and 4) off CPB.
Postoperative vitals, urine output, ABG, VBG, CBC, serum lactate, Chest X-ray (CXR) and Renal Function Test (RFT) were collected for 72 hours.

We measured oxygen tension, saturation, carbon dioxide tension, haemoglobin and lactate from both ABG and VBG analysis. By using following formula, we calculated arterial oxygen content (CaO₂), venous oxygen content (CvO₂), difference between venous and arterial oxygen content (C(a−v)O₂), oxygen extraction ratio (OER), difference between arterial and venous carbon dioxide content P(v-a)CO₂, and P(v-a)CO₂/C(a−v)O₂ ratio [22].

\[
\text{CaO}_2 = (1.34 \times \text{SaO}_2 \times \text{Hb}) + (0.003 \times \text{PaO}_2) \\
\text{CvO}_2=(1.34 \times \text{SvO}_2 \times \text{Hb}) + (0.003 \times \text{PcvO}_2) \\
\text{C(a−v)O}_2 = \text{CaO}_2-\text{CvO}_2 \\
\text{P(v-a)CO}_2 = \text{PvCO}_2-\text{PaCO}_2 \\
\text{P(v-a)CO}_2/C(a-v)O_2 ratio} = \text{P(v-a)CO}_2\text{gap}/(\text{C(a−v)O}_2) \\
\text{OER} = \text{C(a−v)O}_2/\text{CaO}_2 \\
\]

Patients were followed during 72 hours of ICU stay, the ICU length of stay and ICU mortality were computed.

STATISTICAL ANALYSIS

Statistical analysis was carried out using SPSS version 20.0 software (SPSS Inc, USA). One-way ANOVA test and independent sample t-test were used to compare categorical and continuous variables respectively. Data were presented as means±SD or proportion as appropriate. The p-value less than 0.05 was considered to be significant.

RESULTS

The demographic and the preoperative CPB data have been presented in [Table/Fig-1-3]. Age ranged between the one month to 84 months.

White Blood Cell (WBC) and Haemoglobin (Hb), creatinine and platelet count till third postoperative day are described in [Table/Fig-4]. There was significant fall in platelet count on second postoperative day, however, the count started recovering from day three.

DISCUSSION

Difference between mixed venous and arterial CO₂ content reflect the cardiac output, as per Fick equation. A linear relationship between venous to arterial CO₂ content difference and cardiac output has been described [22].

According to the modified Fick equation applied to CO₂, PCO₂ gap is linearly related to CO₂ production (VCO₂) and inversely related to cardiac index. Considering the respiratory quotient (VCO₂/VO₂ ratio), VCO₂ is directly related to O₂ consumption (VO₂) [20,23]. Under conditions of adapted cardiac output to VO₂, even if the CO₂ produced is higher than normal because of an additional anaerobic CO₂ production, in the presence of sufficient flow to wash out the CO₂ produced by the tissues, the P(v-a)CO₂ should not be increased. Conversely, low blood flow can result in a widening of the P(v-a)CO₂ even if no additional CO₂ production occurs because of a CO₂ stagnation phenomenon [19,24]. Venous hypercarbia is a marker of limited blood flow during cardiac arrest and shock states [5,9,25].

Mekontso-Dessap A et al., suggested that the P(v-a)CO₂/Ca-v)O₂ ratio might be a reflection of anaerobic metabolism, demonstrating a positive correlation between this parameter and lactate [9]. A study by Neviere R et al., thus demonstrated the key role of microvascular blood flow on gastric CO₂ accumulation [23].

Meanwhile, Creteur J et al., found a significant correlation among sublingual CO₂, gastric mucosal CO₂ and microcirculatory heterogeneity in human septic shock during dobutamine infusion and suggested that the primary determinant of tissue CO₂ accumulation was the microcirculatory blood flow [26]. Hence, there is an evident

Table/Fig-1: Demographic profile of the study population.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>Body surface area (kg/m²)</th>
<th>CPB time (min)</th>
<th>Cross clamp time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>71.3303</td>
<td>67.418</td>
<td>0.3837</td>
<td>95.3545</td>
<td>63.3107</td>
</tr>
<tr>
<td>Median</td>
<td>69.0000</td>
<td>62.0000</td>
<td>0.2531</td>
<td>87.0000</td>
<td>57.0000</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>16.11076</td>
<td>3.05324</td>
<td>0.14125</td>
<td>43.17037</td>
<td>34.01961</td>
</tr>
<tr>
<td>Range</td>
<td>43-120</td>
<td>2.3-14</td>
<td>0.17-0.74</td>
<td>95.3-43.1</td>
<td>63.3-34.0</td>
</tr>
</tbody>
</table>

Table/Fig-2: Describes data of pre CPB arterial and venous pH, PCO₂, PO₂, Hb, SpO₂ and temperature.

<table>
<thead>
<tr>
<th>Preoperative CPB</th>
<th>Artery (Mean±SD)</th>
<th>Vein (Mean±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.34±0.09</td>
<td>7.33±0.09</td>
<td>0.5647</td>
</tr>
<tr>
<td>PCO₂ (mm Hg)</td>
<td>43.65±10.30</td>
<td>45.11±9.90</td>
<td>0.2850</td>
</tr>
<tr>
<td>SpO₂ (%)</td>
<td>89.58±15.56</td>
<td>70.82±16.51</td>
<td><0.001</td>
</tr>
<tr>
<td>Hb (gm/dl)</td>
<td>12.59±9.47</td>
<td>11.32±5.67</td>
<td>0.2288</td>
</tr>
<tr>
<td>PO₂ (mm Hg)</td>
<td>180.65±160.9</td>
<td>45.86±17.01</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table/Fig-3: Shows data and calculation after 10, 30 minutes after CPB and off CPB initiation.

<table>
<thead>
<tr>
<th>Variables</th>
<th>10 minute after CPB (Mean±SD)</th>
<th>30 minute after CPB (Mean±SD)</th>
<th>Off CPB (Mean±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH Artery</td>
<td>7.38±0.07</td>
<td>7.43±0.07</td>
<td>7.35±0.09</td>
<td><0.001</td>
</tr>
<tr>
<td>pH Vein</td>
<td>7.33±0.07</td>
<td>7.39±0.07</td>
<td>7.31±0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>PCO₂ Artery</td>
<td>42.87±8.61</td>
<td>37.01±4.62</td>
<td>40.59±9.05</td>
<td>0.001</td>
</tr>
<tr>
<td>PCO₂ Vein</td>
<td>50.08±9.08</td>
<td>44.65±7.68</td>
<td>47.41±10.52</td>
<td><0.001</td>
</tr>
<tr>
<td>P(v-a)CO₂</td>
<td>7.20±3.48</td>
<td>7.36±3.92</td>
<td>6.68±5.55</td>
<td>0.490</td>
</tr>
<tr>
<td>CvO₂ (ml O₂/dl)</td>
<td>12.77±1.54</td>
<td>13.16±3.37</td>
<td>15.44±2.86</td>
<td><0.001</td>
</tr>
<tr>
<td>SpO₂ Artery</td>
<td>9.63±2.16</td>
<td>10.21±3.41</td>
<td>12±2.80</td>
<td><0.001</td>
</tr>
<tr>
<td>SpO₂ Vein</td>
<td>3.14±1.36</td>
<td>3.08±1.14</td>
<td>4.54±4.20</td>
<td>0.001</td>
</tr>
<tr>
<td>Lactate Artery (mg/dl)</td>
<td>15.24±2.14</td>
<td>17.35±2.86</td>
<td>3.14±3.23</td>
<td>0.009</td>
</tr>
<tr>
<td>Lactate Vein</td>
<td>64.01±3.37</td>
<td>67.36±0.09</td>
<td>20.00±3.23</td>
<td>0.009</td>
</tr>
<tr>
<td>Sugar artey</td>
<td>78.29±12.74</td>
<td>79.55±15.05</td>
<td>74.19±12.58</td>
<td>0.009</td>
</tr>
<tr>
<td>Sugar Vein</td>
<td>78.29±12.74</td>
<td>79.55±15.05</td>
<td>74.19±12.58</td>
<td>0.009</td>
</tr>
<tr>
<td>Hb Artery</td>
<td>9.02±1.08</td>
<td>9.80±1.20</td>
<td>12.67±9.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Hb Vein</td>
<td>9.00±1.18</td>
<td>10.30±3.59</td>
<td>11.84±1.98</td>
<td><0.001</td>
</tr>
<tr>
<td>PO₂ Artery</td>
<td>270.42±109.6</td>
<td>271.64±70.7</td>
<td>176.49±132.17</td>
<td><0.001</td>
</tr>
<tr>
<td>PO₂ Vein</td>
<td>50.33±27.43</td>
<td>48.05±16.33</td>
<td>52.96±58.76</td>
<td>0.641</td>
</tr>
<tr>
<td>Do₂ (ml O₂/min)</td>
<td>290.90±35.02</td>
<td>301.62±76.19</td>
<td>1.81</td>
<td></td>
</tr>
</tbody>
</table>
link between blood flow and tissue or local CO₂ accumulation conducting to increase tissue or venous-to-arterial CO₂ differences, but sometimes normal macro haemodynamics does not prevent elevation of P(v-a)CO₂.

In a study by Mekontso-Dessap A et al., global anaerobic metabolism reflected as increase in P(v-a)CO₂ to oxygen consumption ratio [9].

During conditions of tissue hypoxia but with preserved blood flow (even though during anaerobic metabolism carbon dioxide production (VCO₂) decreases less than oxygen consumption (VO₂)), venous blood flow might be high enough to ensure adequate washout of the CO₂ produced by hypoxic cells, thereby preventing a P(v-a)CO₂ increase.

The increase in venous PCO₂ would reflect a state of insufficient flow relative to CO₂ production [26]. This condition has been demonstrated previously. Indeed, Vallet B et al., showed that the venous-to-arterial CO₂ gap (PCO₂ gap) increased during low blood flow-induced tissue hypoxia (ischemic hypoxia) while it remained unchanged during hypoxemia-induced hypoxia (hypoxic hypoxia) [18].

Our study, unlike others, was performed in paediatric cardiac surgical patients, who underwent CPB during cardiac surgery.

We hypothesize that P(v-a)CO₂/C(a-v)O₂ could be a better marker of anaerobic metabolism and low flow during CPB. Most of the studies performed, were in adult group of patients having sepsis. Our study has proved that P(v-a)CO₂/C(a-v)O₂ can detect anaerobic metabolism earlier than lactate.

ROC curve at 30 minute of cardiopulmonary bypass time shows that P(v-a)CO₂/C(a-v)O₂ was more specific and sensitive than lactate to detect anaerobic metabolism. We suggest to use P(v-a)CO₂/C(a-v)O₂ as a marker to detect low flow on CPB [Table/Fig-5].

In our study, we found that platelet count decrease was significant on second postoperative day. However, recovery started from third postoperative day.

LIMITATION

Studies involving large population and multiple centers are required to support the study, as our present study is single centric and with a small size.

CONCLUSION

We suggest to use P(v-a)CO₂/C(a-v)O₂ ratio as a marker to detect anaerobic metabolism on CPB. Unfortunately, the calculation of CO₂ content is very complex and subject to errors due to the number of variables included in the formula.

REFERENCES

[15] Pearse RM, Hinds CJ. Should we use central venous saturation to guide...

PARTICULARS OF CONTRIBUTORS:
1. Professor and Head, Department of Cardiac Anaesthesia, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.
2. Chief Perfusionist, Department of Perfusion, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.
3. Resident, Department of Cardiac Anaesthesia, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.
4. Perfusionist, Department of Perfusion, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.
5. Research Associate, Department of Research, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.
6. Postgraduate Student, Department of Perfusion, U. N. Mehta Institute of Cardiology and Research Center, Ahmedabad, Gujarat, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Ramesh Patel,
Professor and Head, Department of Cardiac Anaesthesia, U. N. Mehta Institute of Cardiology and Research Center,
Civil Hospital Campus, Asarwa, Ahmedabad-380016, Gujarat, India.
E-mail: dr.ramesh33@gmail.com

FINANCIAL OR OTHER COMPETING INTERESTS: None.

Date of Submission: Sep 23, 2016
Date of Peer Review: Oct 22, 2016
Date of Acceptance: Feb 05, 2017
Date of Publishing: Apr 01, 2017