

Impedance Cardiography (ICG)

Application of ICG for Hypertension Management

Impedance Cardiography (ICG)

Non-invasive Beat-to-beat Hemodynamic Monitoring

Diastole

Systole

- Aortic valve is closed
- No blood flow in the aorta
- Red blood cells are orientated randomly

- Aortic valve opens
- Blood flow in the aorta (Windkessel function)
- Alignment of red blood cells

Sources of the measured impedance change

Impedance Cardiography (ICG) ACM – Arterial Compliance Modulation Latest Technology in ICG

Earlobe sensor:

- Registration of peripheral pulse wave
- Calculation of aortic compliance based on pulse wave velocity and curve shape parameters
- Completion to standard ICG measurement to improve parameter calculation

Patient related arterial stiffness

Impedance Cardiography (ICG) ICG waveform and fiducial points

A-wave - Contraction of atrium

В

C X

Y

0

PEP

- Opening of aortic valve
- Max. systolic flow
- Closing of aortic valve
- Closing of pulmonal valve
- Opening of mitral valve
- Pre-Ejection Period
- LVET Left Ventricular Ejection Time

- Automatic detection of fiducial points
- Calculation of hemodynamic parameters (e.g. Stroke Volume [SV], Cardiac Output [CO], Thoracic Fluid Content [TFC])

Impedance Cardiography (ICG) Equation for Stroke Volume Estimation

$$SV = V_{EPT} \cdot \frac{dZ_{\max}}{Z_0} \cdot LVET$$

SV	Stroke	Volume
----	--------	--------

- **V**_{EPT} Patient related parameter (depending on age, weight, height, gender, ACM etc.)
- dZ_{max} Amplitude of the systolic wave of the ICG
- **Z**₀ Base impedance (overall impedance of the thorax)
- **LVET** Left Ventricular Ejection Time: time interval between opening and closing of the aortic valve

Impedance Cardiography (ICG) Role in Hypertension

Problem

Only 34% of 50 million U.S. hypertensive patients have controlled BP

Hemodynamic Role

- High BP caused by high CO or high SVR
- Anti-hypertensive medications reduce BP by lowering CO or SVR

Challenges

• In spite of new hypertension medications and awareness, treatment success and patient compliance remain low

ICG Role

• ICG helps determine cause of high BP in order to target, optimize, and validate medications and assess patient risk

Impedance Cardiography (ICG) Application in Hypertension

Diagnostic

- Determination of hemodynamic status of patient
- Evaluate cause for hypertension

Treatment

- Target and optimize pharmacological therapy based on underlying cause of hypertension
- Identify quantitative fluid changes with TFC parameter
- Detect hemodynamic changes with compliance to medication and diet

Impedance Cardiography (ICG)

Hemodynamic Components and Implications for Treatment

- The Therapeutic chart describes relation of blood pressure and stroke volume
- Goal area describing
 normohemodynamic state
- Hypertension treatment depending
 on position in therapeutic chart

Example

 Patient with SI of 75 ml/m² and MAP of 120 mmHg

Example 1

- SI of 75 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hyperdynamic

Treatment 1: Vasodillators

MAP gets normal but patient is still in hyperdynamic state with high workload on the myocardium

Bad treatment for this patient

Example 2

- SI of 25 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hypodynamic

Treatment 1: Diuretics

MAP gets normal but patient is still in hypodynamic state with low flow

Bad treatment for this patient

Example 2

- SI of 25 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hypodynamic

Treatment 2: Vasodillator

MAP and SI gets normal and patient status moves to normohaemodynamic

Good treatment for this patient

Example 3

- SI of 45 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and normodynamic

Combined Treatment:

Vasodillator + Negative inotropes

 MAP and SI gets normal and patient status moves to normohaemodynamic

Good treatment for this patient

Impedance Cardiography (ICG) Hypertension Case Study

Patient:	41 year old female
History:	Hypertension for 1 year
Current therapy:	Diuretic (Chlorthalidone 25 mg qd)

Visit	Symptoms/ Exam	CI	SI	SVRI	TFC
#1	No sign or symptoms	2.8	36	3257	33.3
	HR 78, BP 160/100				

ICG Interpretation:Cause of hypertension is high SVRITreatment Decision:Add ACE inhibitor (Lisinopril 5 mg qd)

From John Strobeck, M.D., The Heart Lung Center, Hawthorne, NJ

Impedance Cardiography (ICG) Hypertension Case Study – cont.

ICG Interpretation: Addition of ACE inhibitor reduced SVRI, lowering BP to acceptable levels.

From John Strobeck, M.D., The Heart Lung Center, Hawthorne, NJ