Impedance Cardiography (ICG)

Application of ICG in Intensive Care and Emergency
Aim of haemodynamic monitoring in ICU and ED

Detection and therapy of insufficient organ perfusion

Answers to common cardiovascular questions:
• Hydration or Dehydration therapy?
• Which catecholamine should be used?
• Indication of further medication (vasopressin, vasodillators)?

Parameters required for sufficient haemodynamic monitoring:
• Haemodynamics
 - SV – Stroke Volume
 - CO – Cardiac Output
 - CI – Cardiac Index
• Afterload
 - SVRI – Systemic Vascular Resistance Index
 - MAP – Mean Arterial Pressure
• Contractility
 - ACI – Acceleration Index
Fluid Management

Preload Responsiveness

Question:
Will SV increase after application of additional fluid?

Current situation:
- Available parameters like CVP (central venous pressure) and PWP (pulmonary wedge pressure) are a poor predictor of preload responsiveness.
- Parameters have to be measured invasively and are not available in every situation.

Solution with Niccomo:
- Measurement of SVV (stroke volume variation) in ventilated patients as a highly sensitive indicator of preload responsiveness.
- Standardized passive leg raising (PLR) test for patients who are spontaneously breathing.
Fluid Management

Stroke Volume Variation (SVV)

Respiration affects:
- Heart Rate
- Blood Pressure
- Stroke Volume (SV)

Restrictions:
- Only possible in ventilated patients with tidal volumes of ≥ 8cc/kg
- Arrhythmias adversely reduce accuracy of SVV

SVV describes the variation of SV during expiration to inspiration and is a predictor of preload responsiveness.

SVV over 15 % Fluid responsive
Fluid Management

Passive Leg Raising Test (PLR)

- Preload change caused by PLR
- Record of SV change during PLR
- Standardized test procedure with software support
- Clear reproducible results due to beat-by-beat measurement

SV change over 15% Fluid responsive
Cardiogenic Shock ➤ cardiac cause

Causes:
- Heart attack
- Heart insufficiency

Diagnosis:
- Decreased CI
- Increased SVRI due to vasoconstriction
- Decreased blood pressure
- Decreased contractility

Therapy:
- Nitroglycerin
- Catecholamine

Ramirez, et al. Journal of the American College of Cardiology, 2004;43
Cardiogenic Shock ▶ non-cardiac cause

Causes:
• Pulmonary embolism
• Pneumothorax

Diagnosis:
• Decreased CI
• Increased SVRI due to vasoconstriction
• Decreased blood pressure
• Normal contractility

Therapy:
• Anticoagulation
• Chest tube
Septic Shock

Causes:
- Systemic infection

Diagnosis:
- Increased CI
- Decreased SVRI
- Decreased blood pressure
- Normal contractility

Therapy:
- Antibiotics

Hypovolemic Shock

Causes:
- Internal bleeding
- Traumatic bleeding

Diagnosis:
- Decreased CI
- Increased SVRI
- Decreased blood pressure
- Normal contractility

Therapy:
- Infusions
- Blood transfusions
Pulmonary Oedema

Question
Congestive Heart Failure or Volume Overload?

ICG diagnosis:
• Increased TFC
• Decreased ACI

Congestive Heart Failure

Therapy:
• Catecholamine
• Positive inotropic agents

ICG diagnosis:
• Increased TFC
• Normal ACI
• SVV < 10% during passive leg rising test

Volume Overload

Therapy:
• Diuretics
Dyspnea – Case study

Patient: 81 year old female

History: Hypertension, left ventricular hypertrophy, mitral regurgitation, atrial fibrillation, normal ejection fraction, chronic obstructive pulmonary disease.

Current therapy: Digoxin 0.125 mg qd, ACE inhibitor (Enalapril 5 mg bid).

<table>
<thead>
<tr>
<th>Visit</th>
<th>Symptoms / Exam</th>
<th>CI</th>
<th>SI</th>
<th>SVRI</th>
<th>TFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Rales, rhonchi, shortness of breath, HR 76, BP 160/100</td>
<td>2.8</td>
<td>36</td>
<td>3400</td>
<td>23.2</td>
</tr>
</tbody>
</table>

ICG Interpretation: Normal CI, SVRI, and TFC do not indicate decompensated HF or pulmonary edema. Likely cause of symptoms is pulmonary disease.

Decision: Initiate antibiotics, bronchodilator.

From John Strobeck, M.D., The Heart Lung Center, Hawthorne, NJ
Conclusion

Benefit of Impedance Cardiography in ICU and ED:

- Quick, easy haemodynamic assessment in addition to standard parameters
- Fast evaluation of preload responsiveness
- Early detection of changes in the haemodynamic status
- Optimization of medications
- Ideal for long term patient monitoring
- No additional physiological stress for the patient