

Application of ICG for Hypertension Management

Non-invasive Beat-to-beat Hemodynamic Monitoring

Diastole

- Aortic valve is closed
- No blood flow in the aorta
- Red blood cells are orientated randomly

- Aortic valve opens
- Blood flow in the aorta (Windkessel function)
- Alignment of red blood cells

Sources of the measured impedance change

ACM – Arterial Compliance Modulation Latest Technology in ICG

Earlobe sensor:

- Registration of peripheral pulse wave
- Calculation of aortic compliance based on pulse wave velocity and curve shape parameters
- Completion to standard ICG measurement to improve parameter calculation
 - Patient related arterial stiffness

Impedance Cardiography (ICG) ICG waveform and fiducial points

- Automatic detection of fiducial points
- Calculation of hemodynamic parameters (e.g. Stroke Volume [SV], Cardiac Output [CO], Thoracic Fluid Content [TFC])

Impedance Cardiography (ICG) Equation for Stroke Volume Estimation

$$SV = V_{EPT} \cdot \frac{dZ_{\text{max}}}{Z_0} \cdot LVET$$

SV Stroke Volume

V_{EPT} Patient related parameter (depending on age, weight, height, gender,

ACM etc.)

dZ_{max} Amplitude of the systolic wave of the ICG

Z₀ Base impedance (overall impedance of the thorax)

LVET Left Ventricular Ejection Time: time interval between opening and closing

of the aortic valve

Impedance Cardiography (ICG) Role in Hypertension

Problem

Only 34% of 50 million U.S. hypertensive patients have controlled BP

Hemodynamic Role

- High BP caused by high CO or high SVR
- Anti-hypertensive medications reduce BP by lowering CO or SVR

Challenges

 In spite of new hypertension medications and awareness, treatment success and patient compliance remain low

ICG Role

 ICG helps determine cause of high BP in order to target, optimize, and validate medications and assess patient risk

Impedance Cardiography (ICG) Application in Hypertension

Diagnostic

- Determination of hemodynamic status of patient
- Evaluate cause for hypertension

Treatment

- Target and optimize pharmacological therapy based on underlying cause of hypertension
- Identify quantitative fluid changes with TFC parameter
- Detect hemodynamic changes with compliance to medication and diet

Hemodynamic Components and Implications for Treatment

- The Therapeutic chart describes relation of blood pressure and stroke volume
- Goal area describing normohemodynamic state
- Hypertension treatment depending on position in therapeutic chart

Example

 Patient with SI of 75 ml/m² and MAP of 120 mmHg

SI [ml/m²]

Example 1

- SI of 75 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hyperdynamic

Treatment 1: Vasodillators

- MAP gets normal but patient is still in hyperdynamic state with high workload on the myocardium
 - **Bad treatment for this patient**

SI [ml/m²]

Example 1

- SI of 75 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hyperdynamic

Treatment 2: Negative inotropes

- MAP and SI gets normal and patient status moves to normohaemodynamic
- Good treatment for this patient

SI [ml/m²]

Example 2

- SI of 25 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hypodynamic

Treatment 1: Diuretics

- MAP gets normal but patient is still in hypodynamic state with low flow
- Bad treatment for this patient

SI [ml/m²]

Example 2

- SI of 25 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and hypodynamic

Treatment 2: Vasodillator

- MAP and SI gets normal and patient status moves to normohaemodynamic
- Good treatment for this patient

SI [ml/m²]

Example 3

- SI of 45 ml/m² and MAP of 120 mmHg
- Patient is hypertensive and normodynamic

Combined Treatment:

Vasodillator + Negative inotropes

 MAP and SI gets normal and patient status moves to normohaemodynamic

Good treatment for this patient

SI [ml/m²]

Impedance Cardiography (ICG) Hypertension Case Study

Patient: 41 year old female

History: Hypertension for 1 year

Current therapy: Diuretic (Chlorthalidone 25 mg qd)

Visit	Symptoms/ Exam	CI	SI	SVRI	TFC
#1	No sign or symptoms HR 78, BP 160/100	2.8	36	3257	33.3

ICG Interpretation: Cause of hypertension is high SVRI

Treatment Decision: Add ACE inhibitor (Lisinopril 5 mg qd)

Impedance Cardiography (ICG) Hypertension Case Study – cont.

Visit	Symptoms/ Exam	CI	SI	SVRI	TFC
#1	No sign or symptoms HR 78, BP 160/100 (120)	2.8	36	3257	33.3
#2	No sign or symptoms One Week later HR 74, BP 129/60 (83)	2.9	39	2124	32.1

ICG Interpretation: Addition of ACE inhibitor reduced SVRI, lowering BP to acceptable levels.